Прокладка и подключение
Мы рассмотрели все самые важные вопросы, начиная от принципа действия саморегулирующего греющего кабеля, до вопросов его выбора. Осталось узнать, как осуществляется его установка. Сначала обсудим самый интересный способ – внутри трубы.
Скрытая укладка внутри трубы
Перед нами самая интересная задача – уложить саморегулирующий греющий кабель для водопровода внутри трубы. Находясь в нагретом состоянии, он не даст трубе замерзнуть и лопнуть. Давайте посмотрим, как это делается. Нам понадобятся следующие материалы и инструменты:
Подобная схема подключения требует куда больших усилий, но дает несоизмеримый прирост в КПД
- Саморегулирующий греющий кабель подходящей длины;
- Острый нож для снятия изоляции;
- Термоусадочная пленка для изоляции проводников;
- Резиновый сальник;
- Тройник для установки саморегулирующего кабеля внутрь трубы;
- Фен для усадки пленки;
- Электрический провод с вилкой.
Для начала определяем место ввода – это может быть внутренний или наружный участок (здесь все индивидуально, смотрим по ситуации).
Конечный участок располагается там, где труба уходит в землю или заходит в другое здание.
Помните, что на всем протяжении не должно быть кранов и вентилей, так как они могут повредить саморегулирующий греющий кабель.
Все работы проводятся до начала заморозков, при положительной температуре – не дожидайтесь, пока появятся первые морозы. Не забудьте заранее перекрыть воду!
Особая муфта, используемая при подключении. Купить можно в любом сантехническом магазине
Если водопроводная труба поднимается из пола и отправляется дальше по горизонтали, то это облегчит прокладку – режем трубу и устанавливаем в этом месте тройник.
Далее насаживаем на кончик саморегулирующего греющего кабеля термоусадочную трубку и нагреваем ее строительным феном – этот кончик должен быть надежно герметизирован, чтобы избежать контакта воды и токоведущих частей. Через верхний отвод заводим в него саморегулирующий греющий кабель, не забыв надеть на него сальник.
Далее проталкиваем кабель на необходимую длину – ее нужно рассчитать заранее и с небольшим запасом. На другом конце нам нужно смонтировать провод с вилкой. Аккуратно снимаем изоляцию и оплетку, чтобы у нас виднелись два проводника – к ним мы припаиваем провод, не забыв надеть на него соединительную муфту из термоусадочного материала (после пайки надеваем ее и обдуваем горячим воздухом из фена).
После того как вы проведете все электрические соединения, необходимо проверить сопротивление с помощью мультиметра – оно должно составлять несколько десятков ом. Если мультиметр показывает короткое замыкание, извлеките саморегулирующий кабель и осмотрите его на предмет повреждения
Особенное внимание уделите самой дальней концевой части
Теперь фиксируем сальник, открываем подачу воды, проверяем отсутствие протечек в месте нашей работы. Если все хорошо, включаем провод с подключенным к нему саморегулирующим греющим кабелем в сеть. Несмотря на то что теперь водопровод защищен от замерзания, настоятельно рекомендуется обмотать трубу теплоизоляцией. Помните, что хорошая защита – это многоступенчатая защита.
Открытая наружная укладка
При необходимости, можно уложить саморегулирующий греющий кабель снаружи водопровода. Им обматывают не только сами трубы, но и установленные на них фланцы, соединительные муфты и вентили. Самый простой вариант – проложить несколько саморегулирующих кабелей параллельно трубе, закрепив их с помощью алюминиевого скотча. Также возможна укладка спиралью или двойной спиралью, что только увеличивает эффективность обогрева.
Крепить греющий кабель при таком подключении — сплошное удовольствие. Главное не скупиться на алюминиемый скотч
Вы можете использовать и двойной способ укладки – один греющий кабель уложить параллельно, а вторым обмотать трубу по спирали. К трубе он приматывается с помощью все того же алюминиевого скотча, колечками через каждые 20-30 см. После того как намотка будет завершена, накладываем скотч на кабель по всей его длине – так мы добьемся максимальной эффективности системы.
Некоторые специалисты советуют увеличить эффективность передачи тепла предварительным обматыванием труб фольгой или тем же скотчем.
После того как вы уложите саморегулирующий греющий кабель на водопроводную трубу и выполните все необходимые электрические подключения, оберните полученное хозяйство слоем теплоизоляции – это воспрепятствует уходу тепла в атмосферу. Также существуют рекомендации по установке на систему обогрева системы водоснабжения защитных автоматов – они предотвратят утечку электроэнергии при разгерметизации изоляции.
Использование этого явления
Данное явление нашло свое применение в дуговой сварке, принцип работы которой построен на взаимодействии стержня с металлической поверхностью. Поверхность нагревается до температуры плавки, благодаря чему появляется новое прочное соединение, т.е. сварочный электрод замыкается с заземляющим контуром.
Такие режимы короткого замыкания действуют непродолжительный промежуток времени. В момент сварки в месте соединения стержня и поверхности возникает нестандартный заряд тока, из-за чего выделяется большое количество теплоты. Ее достаточно для плавки металла и создания сварочного шва.
Также короткое замыкание используется в сфере промышленной автоматики, с его помощью создаются информационные системы, которые отражают параметры передачи токового сигнала.
Полезное КЗ применяется в электродинамических датчиках. Например, в индукционных виброметрах, сейсмических приемниках. Короткое замыкание дает возможность дополнительно уменьшить количество колебаний подвижной системы.
Режим КЗ может использоваться при объединении каскадов в электронике, когда выход первого активного компонента работает в режиме КЗ.
Какие виды систем заземления существуют и что такое защитное заземление?
Чем отличается УЗО от дифавтомата
Почему при включении или во время работы стиральной машины выбивает пробки, УЗО или дифавтомат
Что такое ЭДС индукции и когда возникает?
Что такое шаговое напряжение и как покинуть опасную зону
Что такое петля фаза-ноль простым языком — методика проведения измерения
Как проводится
Для высоковольтной обмотки задаётся паспортное значение холостого хода. Оно устанавливается по рекомендуемым величинам угла сдвига фаз (sinΦ0 и cosΦ0; индекс указывает на то, что мощность трансформатора определяется в режиме холостого хода).
Далее согласно показаниям вольтметра выполняется измерение параметров шунтирующих эквивалентных цепей. Они относятся к низковольтной обмотке, поэтому тестирование разомкнутой цепи устанавливает и потери в сердечнике, и параметры шунта эквивалентной цепи.
Правильная схема испытания предполагает, что при низком напряжения трансформатор находится в режиме КЗ. Ваттметр, вольтметр и амперметр подключены с высоковольтной стороны. Сигнал подается в силовую схему и увеличивается от нуля до тех пор, пока показания амперметра не будут равны номинальному току. В этот момент снимаются показания всех приборов, причём на амперметре будет показано значение первичного эквивалента тока полной нагрузки, а на ваттметре – потери мощности в проводниках и сердечнике.
Подтверждение закона Ома
Бум исследования электрических явлений пришёлся на конец XVIII – начало XIX веков. Такие учёные, как Фарадей, Ампер, Вольт, Эрстед, Кулон, Лачинов, Ом провели ряд экспериментов, которые позволили Максвеллу создать теорию электромагнитных явлений.
Огромную роль в открытии новых знаний сыграл опыт Ома исследовавшего, от чего зависит сила тока в цепи. Немецкий физик ставил опыты над проводимостью различных материалов. Для этого он использовал электрическую цепь, в разрыв которой подключал проводники разной длины и замерял силу тока.
Изначально учёный не смог установить закономерность. Всё дело в том, что для своих опытов Ом использовал химическую батарею. Друг учёного Поггендорф предложил взять термоэлектрический источник тока. В итоге физик смог проследить зависимость. Описал он её так: частное от a, разделённого на l + b, где b определяет интенсивность воздействия на проводника длиною l, причём a и b — постоянные, зависящие соответственно от действующей силы и сопротивления элементов цепи.
Обычно при изучении закона в седьмом классе средней школы учитель демонстрирует эту зависимость на практических уроках. Для этого чтобы ученики удостоверились в справедливости утверждения, преподаватель собирает электрическую цепь, в состав которой входят:
- вольтметр – прибор для измерения напряжения, включается параллельно измеряемому проводнику;
- амперметр – устройство для замера тока, подключается последовательно с измеряемым телом;
- регулируемый источник электродвижущей силы (ЭДС).
Суть опыта заключается в подключении проводников с разной длиной. Измеренные результаты заносят в таблицу. Она должна иметь примерно следующий вид:
Первое тело | Второе тело | Третье тело | ||||||||
U, В | I, А | U, В | I, А | U, В | I, А | |||||
1 | 0,5 | 1 | 0,4 | 1 | 0,2 | |||||
2 | 1 | 2 | 0,6 | 2 | 0,3 | |||||
3 | 1,5 | 3 | 0,8 | 3 | 0,4 | |||||
4 | 2 | 4 | 1 | 4 | 0,5 |
Проведя анализ таблицы, можно сделать вывод. Если для любого тела напряжение разделить на соответствующую ему силу тока, то получится одно и то же число. Следовательно, это отношение является свойством проводника. Для первого оно равно двум, второго – пяти, а третьего – десяти. При одинаковых токах в третьем случае число больше, значит, это тело оказывает большее сопротивление току.
Опыты холостого хода и короткого замыкания
Цель опытов.
Опыты холостого хода и короткого замыкания проводятся для определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения.
Опыт холостого хода.
Для однофазного трансформатора опыт холостого хода выполняется по схеме рис. 2.11. К первичной обмотке подводится номинальное напряжение , к вторичной — подключен вольтметр , имеющий достаточно большое сопротивление. Практически можно считать, что ток .
Кроме того, в схему включены амперметр , вольтметр и ваттметр . Амперметр показывает ток холостого хода , вольтметр — номинальное напряжение первичной обмотки , вольтметр —напряжение и ваттметр —мощность потерь при холостом ходе . По этим показаниям можно определить коэффициент трансформации для понижающего трансформатора или для повышающего трансформатора. Так как нагрузка отсутствует (), то мощность, показываемая ваттметром, — это мощность потерь в стали трансформатора (магнитопроводе).
Мощностью потерь в проводах обмоток можно пренебречь, так как при опыте холостого хода ток вторичной обмотки равен нулю, а ток в первичной обмотке — ток холостого хода составляет примерно 5 % номинального.
Можно также найти
и полное сопротивление цепи (см. рис. 2.9):
(2.12)
Активное сопротивление цепи
и индуктивное сопротивление цепи
Так как практически сопротивления и , то значения и определяются из приведенных формул.
Опыт короткого замыкания.
Опыт короткого замыкания выполняется по схеме, представленной на рис. 2.12, при условии, что к первичной обмотке подводится пониженное напряжение , составляющее 5—10% , а точнее, такое напряжение, при котором токи и в обмотках равны номинальным.
Вторичная обмотка трансформатора замыкается накоротко.
При этом опыте вольтметр показывает напряжение первичной обмотки , ваттметр — мощность короткого замыкания , амперметр — ток в первичной обмотке.
По этим показаниям можно определить мощность потерь в обмотках, так как потери в магнитопроводе составляют лишь 0,005 – 0,1 потерь при номинальном режиме из-за пониженного напряжения . Мощность потерь при коротком замыкании и номинальных токах
Кроме того, по данным этого опыта можно найти параметры упрощенной схемы замещения (рис. 2.13). Полное сопротивление
,
суммарное активное сопротивление обеих обмоток
(2.13)
и реактивное сопротивление
. (2.14)
На основе опытов холостого хода и короткого замыкания по формулам (2.12),(2.13),(2.14) определяются параметры схемы замещения трансформатора.
Напряжение короткого замыкания.
Как следует из схемы замещения (рис. 2.13),
Обычно составляет 5—8 % :
Значение указано на щитке трансформатора. Активная составляющая напряжения короткого замыкания находится по формуле
, (2.15)
а реактивная составляющая напряжения короткого замыкания
. (2.16)
Процентные значения напряжения связаны между собой соотношением:
. (2.17)
Компоненты с нелинейным сопротивлением
Также существуют компоненты, специально разработанные для получения нелинейных кривых сопротивления. Одним из таких устройств является варистор. Эти устройства, обычно изготавливаемые из таких соединений, как оксид цинка или карбид кремния, поддерживают высокое сопротивление между своими выводами до тех пор, пока не будет достигнуто определенное напряжение «срабатывания» или «пробоя» (эквивалентное «потенциалу ионизации» воздушного зазора), после чего их сопротивление резко снижается. В отличие от пробоя диэлектрика, пробой варистора повторяем: то есть он рассчитан на то, чтобы безотказно выдерживать многократные пробои. Ниже показан пример варистора:
Рисунок 5 – Варистор
Существуют также специальные газонаполненные лампы, предназначенные для того же самого и использующие тот же принцип, что и при ионизации воздуха молнией.
Другие электрические компоненты демонстрируют еще более странные графики зависимости силы тока от напряжения. Некоторые устройства при увеличении приложенного напряжения пропускают меньший ток. Поскольку наклон вольт-амперной характеристики для этого явления отрицательный (наклон вниз, а не вверх при движении слева направо), то оно известно как отрицательное сопротивление.
Рисунок 6 – Область отрицательного сопротивления
В частности, вакуумные электронные лампы, известные как тетроды, и полупроводниковые диоды, известные как диоды Эсаки или туннельные диоды, демонстрируют отрицательное сопротивление в определенных диапазонах приложенного напряжения.
Для анализа поведения таких компонентов, где сопротивление изменяется в зависимости от напряжения и тока, закон Ома не очень полезен. Некоторые даже предлагали понизить «закон Ома» до статуса «закона», потому что он не универсален. Было бы правильнее назвать формулу (R=E/I) определением сопротивления, подходящим для определенного класса материалов в узком диапазоне условий.
Однако в интересах учащихся мы будем предполагать, что сопротивления, указанные в примерах схем, стабильны в широком диапазоне условий, если не указано иное. Я просто хотел показать вам немного сложностей реального мира, чтобы не создать у вас ложного впечатления, что все электрические явления можно описать в нескольких простых уравнениях.
Источник
Расчет тока короткого замыкания
Расчет токов короткого замыкания в программе DDECAD Напряжение короткого замыкания – это напряжение, при котором на замкнутой обмотке трансформатора протекает электрический ток, равный номинальному.
Определять напряжение КЗ можно по падению напряжения на трансформаторе. Эта величина характеризует полное сопротивление обмоток.
Токи, возникающие при коротком замыкании, значительно превышают номинальное значение, на которое рассчитана вся электрическая схема. Они могут выжигать слабые места, разрушать их и приводить к возгоранию.
Чтобы исключить аварийную ситуацию, специалисты на стадии проектирования начинают бороться с дефектом и вычислять теоретическую возможность возникновения больших токов. С учетом рассчитанных данных выбираются силовые элементы и защитные компоненты схем. Борются с токами большой величины и при эксплуатации оборудования.
Расчет тока однофазного КЗ и трехфазного осуществляется с помощью закона Ома, полного сопротивления схемы, силовой характеристики мощности и структуры используемой электроустановки. Точность может отличаться в зависимости от предназначения приборов.
Как предупредить короткое замыкание
Самый простой способ – это соблюдать рекомендации, прописанные в ПУЭ – практически всем записям в этой книге предшествует какая-либо авария либо как минимум нештатная ситуация. Ну а так как заучивать правила скорее всего никто не будет, то хотя бы надо руководствоваться здравым смыслом, который диктует следующее:
Если проводка старая, то настоятельно рекомендуется ее замена
Если по каким-либо причинам это невозможно, то, как минимум, надо осмотреть контакты розеток и оценить, требуется ли им дополнительная изоляция.
Если квартиру затопили соседи сверху, то, даже если ничего не замкнуло, это повод пересмотреть скрутки проводов в распределительных коробах – под воздействием влаги липкая сторона изоленты теряет свои свойства.
Нужна осторожность при вбивании гвоздей в стены – неудачно забитый гвоздь приносит с собой большое количество «головной боли» по замене перебитого провода.. Также можно просто сделать фото проводов до того, как они будут спрятаны в стену
Также можно просто сделать фото проводов до того, как они будут спрятаны в стену.
- В частном секторе обязательно надо применять дополнительные меры по защите проводки от крыс и мышей – есть достаточно большое количество найденных домашними электриками способов борьбы с грызунами – это могут быть металлические гофры, промазывание кабелей мастикой и прочие методы.
- Если в розетку приходилось включать мощный прибор, то потом стоит перепроверить, не подгорели ли контакты и состояние изоляции.
Пример поиска короткого замыкания специальным прибором — на видео:
Основные неисправности проводки
Вот какие бывают неисправности электропроводки в квартире и доме:
- Повреждение изоляции. В результате этого, возникнет утечка тока, и если у вас нет УЗО в щитке, то поражения током не избежать. Устранить такую поломку можно с помощью восстановления целостности изоляции или же просто заменить поврежденный участок.
- Повреждение токоведущей жилы. Оно может произойти в результате неаккуратного монтажа или ремонтных работ. Алюминиевые жилы очень хрупкие , поэтому скручивать их винтовым зажимом нужно максимально аккуратно, потому что если они переломаются, пропадет питание.
- Из-за неправильно подобранного сечения жил или плохого контакта в скрутках может возникнуть оплавление изоляции. Такая неисправность может привести к пожару в доме или квартире. Устранить такую неисправность можно заменой кабеля на более мощный.
- Выход из строя бытовой техники. Если ваши электроприборы бьются током или слышен запах гари, значит, из строя вышла бытовая техника. В таком случае может произойти удар током или возгорание электропроводки.
- Плохой контакт в местах подключения проводов к автоматам, розеткам или же плохой контакт в скрутках. В таком случае возникает нагрев жил, оплавление изоляции. И вследствие этого возникает возгорание электропроводки. Устранить неисправность можно подтягиванием зажимов или периодической проверкой всех соединений.
- Выход из строя выключателей и розеток. В среднем у электрического изделия срок службы не превышает 10 лет. Если розетка старая, то при подключении вилки может возникнуть перегрев, из-за которого происходит пожар. Если происходит изнашивание выключателя, то он просто перестает работать.
- Обгорание нулевого провода в щитке. Это самая опасная неисправность электропроводки. Вследствие нее может возникнуть опасность поражения человека током. Устранить такую поломку можно только восстановлением контакта, а предотвратить опасность можно, установив реле контроля напряжения.
Изменение тока в аварийном режиме
В аварийном режиме ток теряет свои постоянные характеристики и подвергается заметным изменениям. В самое первое мгновение он резко увеличивается, после чего происходит его затухание до определенной величины. Далее в работу вступает АРВ – автоматический регулятор возбуждения, под влиянием которого ток доходит до установленного уровня. Этот период известен под названием переходного процесса. Временные рамки наступившего короткого замыкания начинаются со времени изменений токового уровня и заканчиваются отсоединением КЗ.
Различные показатели тока на протяжении всего периода используются для исследований динамической и термической устойчивости аппаратуры, избрания нужных уставок релейной защиты.
В любой сети присутствуют различные типы сопротивлений индуктивного типа. В момент возникновения КЗ они создают определенные препятствия и не позволяют току мгновенно переменяться. То есть, изменения все-таки происходят, но не скачкообразно, а в нарастающем порядке от обычного показателя до аварийного.
Для того чтобы упростить расчетную и аналитическую работу, ток в период перехода условно разделяется на две составные части – апериодическую и периодическую. Первая компонента считается неизменной токовой составной частью. Она появляется в самом начале КЗ и довольно скоро снижается до нулевой отметки.
Периодическая токовая часть в начальном периоде получила такое же название тока КЗ. Он тоже называется сверхпереходным, поскольку для его вычислений замещающая схема дополняется сверхпереходным сопротивлением генераторной установки и сверхпереходной ЭДС. Данная величина применяется при назначении уставок или, когда требуется проверить восприимчивость к току релейной защиты.
По завершении переходного периода периодический ток становится постоянно действующим током короткого замыкания. В этот момент как раз затухает апериодическая компонента, и вступает в действие АРВ. Таким образом, полная величина тока КЗ будет состоять из суммы обеих компонент, действующих в каждый временной отрезок переходного процесса. Полный ток с максимальным мгновенным показателем известен, как ударный ток короткого замыкания, рассчитываемый при анализе динамической устойчивости электрооборудования.
Режим короткого замыкания трансформатора
Режим короткого замыкания — такой предельный режим работы трансформатора, когда к первичной обмотке подводится определенное напряжение, а вторичная обмотка замкнута накоротко.
Различают два вида короткого замыкания — аварийное и испытательное.
Аварийное короткое замыкание происходит в условиях эксплуатации трансформатора, когда он включен на номинальное первичное напряжение. Это опасный аварийный режим, при котором токи в обмотках трансформатора во много раз превышают их номинальные значения. Такие токи приводят обычно к выходу трансформатора из строя (обмотки обугливаются, разрываются). От такого режима трансформатор защищает специальная аппаратура (предохранители, автоматические выключатели, реле), которая в возможно короткий срок должна отключить питание с первичной стороны и предохранить трансформатор от разрушения.
Испытательный режим короткого замыкания или опыт короткого замыкания, создается искусственно путем подведения к первичной обмотке трансформатора специально пониженного напряжения U1к = Uк, при котором токи в обеих обмотках не превышают номинальных значений. По данным опыта короткого замыкания определяют ряд важных параметров и характеристик трансформатора.
Напряжением короткого замыкания двухобмоточного трансформатора называется напряжение, которое при номинальной частоте следует подвести к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в них установились номинальные токи. Обычно напряжение короткого замыкания выражается в процентах от номинального напряжения
(8.9)
Обычно uк= 5,5 — 10% от U1Н и не зависит от того, которая из двух обмоток трансформатора замыкается накоротко. Это важный эксплуатационный параметр, указываемый на щитке трансформатора или в его технической документации.
Поскольку в опыте uк мало, то и поток в магнитопроводе тоже мал, следовательно, потерями в стали, пропорциональными квадрату магнитной индукции, можно пренебречь, считая, что вся потребляемая мощность идет на покрытие тепловых потерь (потерь в меди) в обмотках, т.е.
(8.10)
Режим короткого замыкания трансформатора обычно исследуют опытным путем, когда вторичная обмотка трансформатора закорачивается на амперметр, а к первичной обмотке подводится пониженное напряжение, измеряемое вольтметром, при котором токи в первичной и вторичной цепях не превосходят их номинальных значений. Величина мощности, потребляемой трансформатором из сети в режиме короткого замыкания, измеряется ваттметром.
В опыте короткого замыкания определяются:
а) напряжение короткого замыкания (по показаниям вольтметра U1кн и показаниям амперметров I1н и I2н)
б) активные потери при коротком замыкании трансформатора, которые примерно равны потерям в меди обмоток (по показаниям ваттметра)
в) коэффициент мощности cosjк (по показаниям ваттметра), вольтметра и амперметра в первичной цепи);
г) параметры схемы замещения трансформатора при коротком замыкании:
(8.11)
Таким образом, проделав опыты холостого хода и короткого замыкания, можно определить полные потери трансформатора при его работе под нагрузкой, а следовательно, определить и его коэффициент полезного действия.
Виды КЗ
Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.
Причины возникновения короткого замыкания
Несмотря на случайность данного процесса, существует много причин, имеющих косвенное или прямое отношение к его происхождению. Перечислим наиболее распространенные причины, по данным аварийной статистики:
Износ электрохозяйства энергетических систем или бытовой электросети. Со временем изоляция проводов или токоведущих элементов теряет диэлектрические свойства, в результате на участке цепи возникает непредусмотренное электрическое соединение. Определить общее состояние проводки можно по проводам в электрических точках. Старение изоляции заметно на отводах к электрическим точкам
Превышение допустимой нагрузки на цепь питания. Это вызывает нагрев токоведущих элементов, что приводит к повреждению изоляции. Подробно о перегрузке электросети можно прочитать на нашем сайте. Перегрузка электросети может стать причиной короткого замыкания
Удар молнии в ВЛ. В этом случае происходит перенапряжение электросети, которое может вызвать КЗ
Обратим внимание, что молнии не обязательно попадать непосредственно в ЛЭП, близкий разряд может вызвать ионизацию воздуха, увеличивающую его электропроводимость. В результате увеличивается вероятность образования электрической дуги между линиями электропередач.
Физическое воздействие на провода, вызывающее механическое повреждение изоляции
В качестве примера достаточно вспомнить шутку, где перфоратор называют электрическим прибором для поиска скрытой проводки.
Попадание металлических предметов на токоведущие элементы. Собственно, это следствие, поскольку причина кроется в неудовлетворительном уходе за электрохозяйством.
Подключение к сети неисправного оборудования, например вызванного существенным снижением внутреннего сопротивления.
Человеческий фактор. Под это определение можно подвести практически все случаи так или иначе связанные с неправильными действиями человека. Например, ошибки при монтаже электропроводки, неудачные попытки ремонта электрооборудования, неправильные действия оперативного персонала подстанции и т.д.
https://youtube.com/watch?v=6cyiEfkrMsw