Токи высокой частоты
ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.
Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.
Плюсы использования ТВЧ в разных случаях:
- быстрый нагрев при ковке и прокате металла;
- оптимальный температурный режим для пайки или сварки деталей;
- расплав даже очень тугоплавких сплавов;
- приготовление пищи в микроволновых печах;
- дарсонвализация в медицине.
Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.
Период пульсаций и частота
Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.
Интенсивность циклов
Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.
Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:
Количество нулей после единицы | Приставка к размерности герц |
3 (тысяча) | Кило (кГц) |
6 (миллион) | Мега (мГц) |
9 (миллиард) | Гига (ГГц) |
В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:
- промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
- звуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
- технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
- радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.
Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.
Опасность разночастотных зарядов
Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:
- 40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
- свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
- токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.
Сила тока в розетке
Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.
Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.
220 В
Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.
На этот показатель влияют:
- техническое состояние,
- нагрузки сети,
- загруженность электростанций.
Более 220 В
Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.
Лекция
Измерение мощности с использованием направленных ответвителей Метод измерения мощности с использованием направленных ответвителей основан на явлении отражения падающей волны от нагрузки. Проходящая мощность — это мощность попавшая в нагрузку
Рис. 1
Небольшая часть волны будет ответвляться через отверстия в боковой волновод (рис 1). Расстояние между отверстиями . Вправо будет распространяться часть мощности равная , где . Две волны из 1-ого и 2-ого отверстий складываются в фазе. Волны распространившиеся влево будут в противофазе.
Отраженная волна также пройдет через отверстия (обозначено пунктиром на рис. 1). Однако две отраженные волны, прошедшие через отверстия будут в противофазе из-за разности хода в . При движении влево две волны будут складываться в фазе, но они полностью поглотятся в нагрузке и отражения не будет.
Таким образом направленный ответвитель может выделять либо падающую волну, либо отраженную (если верхний волновод направить в другую сторону). Направленный ответвитель характеризуется коэффициентом затухания и коэффициентом направленности Рассмотрим структурную схему вольтметра проходящей мощности (рис. 2)
Рис. 2
В данной схеме использовано два вольтметра поглощаемой мощности, которые поглощают практически всю мощность.
Измерение частоты применяется довольно часто, и при этом бывает необходима высокая точность измерения. Существует несколько способов измерения частоты. Рассмотрим резонансный способ измерения частоты.
Как выполняется измерение частоты
Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:
- Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
- Установить переключатель на измерение частоты переменного тока.
- Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.
Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.
Приборы для измерения частоты
В практике испытаний ЭМ приходится измерять частоты в довольно широком диапазоне примерно от 1 Гц до 60 кГц. Для этих целей применяются как аналоговые электромеханические частотомеры, так и цифровые электронно-счетные частотомеры. Возможности применения частотомеров могут быть расширены за счет различных измерительных преобразователей — для измерения температуры, давления, деформации, числа оборотов, скольжения и других величин. Для измерения частоты в сетях переменного тока с частотой 50 Гц применяется частотомер типа Д126, а в сетях с частотой 400 или 500 Гц — частотомер Д126/1 ферродинамической системы, класса точности 1,5. Более совершенными являются частотомеры электронные типа Ф5048 с прибором магнитоэлектрической системы в качестве отсчетного устройства. Частотный диапазон прибора разбит на 21 узкий диапазон измерений со средними частотами от 35 до 5000 Гц. Кроме того, он имеет следующие широкие диапазоны измерений: 0—200; 0— 400; 0—1000; 0—2000; 0—4000; 0—10000; 0—20000 Гц. Допускаемая погрешность не превышает ± 0,5% разности конечного и начального значений диапазона измерений для узких диапазонов измерений и конечного значения диапазона измерений для широких диапазонов измерений. Диапазон входных напряжений 1—500 В. Входное сопротивление прибора не менее 20 МОм. Применение при испытаниях ЭМ электронно-счетных частотомеров (ЭСЧ) с цифровой индикацией позволяет с возможно высокой степенью точности проводить измерение частоты и периода электрических колебаний, длительность импульсов, интервал времени, отношение частот двух сигналов, количество электрических импульсов, отклонение частоты от номинального значения. ЭСЧ работают в диапазоне частот от 0,1 Гц до 50 МГц. Принцип работы ЭСЧ заключается в подсчете числа периодов измеряемых колебаний за определенный промежуток времени. Основными элементами ЭСЧ являются электронный счетчик импульсов (ЭСИ) с запоминающим устройством и системой цифровой индикации; временной селектор; формирующие устройства (ФУ), вырабатывающие нормированные по значению и временным параметрам сигналы; устройство формирования времени счета (УФВС), в состав которого входит блок декадных делителей частоты (ДДЧ), устройство управления, обеспечивающее необходимую синхронизацию работы всех элементов ЭСЧ в различных режимах работы. Рис. 1.17. Электронно-счетный частотомер, работающий в режиме измерения частоты
Рис. 1.18. Электронно-счетный частотомер, работающий в режиме измерения периодов
В режиме измерения частоты (рис. 1.17) импульсы, вырабатываемые из измеряемого сигнала, поступают через селектор, открытый на время, формируемое сигналом образцовой частоты, на ЭСИ, на цифровом табло которого индицируется среднее значение измеряемой частоты в единицах частоты. Время счета (усреднения) тсч = 1, 10, 100 мс, 1 или 10 с определяется числом ДДЧ. В режиме измерения периода (рис. 1.18) УФВС вырабатывает импульс длительностью 1 или 10й (п — целое положительное число) периодов входного сигнала, открывающий селектор. Через открытый селектор на ЭСИ от устройства формирования сигнала (УФС) поступают импульсы, сформированные из сигнала образцовой частоты. На цифровом табло ЭСЧ индицируется значение одиночного или усредненного периода в единицах времени (микросекундах, миллисекундах). Коэффициент усреднения 10″ определяется числом п делителей, включенных в тракт формирования времени счета. Погрешность частотомера не превышает значения нестабильности образцовой частоты внутреннего генератора, суммированного с одной единицей младшего разряда отсчетного устройства. Все ЭСЧ имеют цифровой выход и могут успешно применяться в автоматизированных измерительных системах. Технические данные ЭСЧ приведены в .
Формулы расчета силы тока
Электрический ток — это направленное упорядоченное движение заряженных частиц. Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).
— Сила тока через мощность и напряжение (постоянный ток): I = P / U — Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ) — Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3) — Сила тока через мощность и сопротивление: I = √(P / R) — Сила тока через напряжение и сопротивление: I = U / R
- P – мощность, Вт;
- U – напряжение, В;
- R – сопротивление, Ом;
- cos φ – коэффициент мощности.
Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.
Источник
Какие приборы можно использовать
Классификация частотомеров
Все данные приборы делятся на две основные группы по области их применения:
- Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
- Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.
По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.
Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:
- Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
- Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
- Чувствительность, эта величина более важна для радиочастотных устройств.
- Погрешность, с которой он может производить замеры.
Мультиметр с функцией измерения частоты переменного тока
Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр
Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи
Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:
- Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
- Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на о, то есть сила тока, тогда следствием этого неминуемо будет короткое замыкание, которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
- Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.
Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.
Мощность тока через катушку
Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :
Для мгновенной мощности получаем:
Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).
Напряжение на катушке и сила тока через неё.
Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.
В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.
Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.
Постоянный и переменный ток. Частота тока
В преддверии статьи о трансформаторах, мы решили устроить небольшой экскурс и выпустить две небольшие статьи по основным электротехническим определениям, которые плавно подведут нас к пониманию принципа действия трансформаторов. Ведь электричество и трансформаторы неразрывно связаны в своей истории, когда в связи с ростом передаваемых мощностей появилась потребность адаптировать мощность или напряжение под нужные пользователю параметры. Что такое постоянный и переменный ток?
Постоянный ток не меняет своих показателей и направления движения. Встретить такой ток можно в самых обычных пальчиковых батарейках. Постоянный ток характеризуется непрерывным, направленным в одну сторону движением заряженных частиц, он практически никогда не используется в бытовых целях. Потому что передача такого тока на большие расстояния несёт за собой колоссальные потери и передавать его просто невыгодно. Поэтому, чтобы сделать электричество более дешевым и доступным, используют именно переменный ток.
Переменный ток — это ток, направление движения которого может меняться в процессе работы, равно как и его показатели. Поэтому для движения такого тока используется два полюса. Чаще всего их называют плюс и минус. Такой ток имеет частоту. Частота, это самое сложное для понимания, постараемся рассказать максимально просто. Начнем с того, что во всех бытовых сетях по всему миру используется периодический переменный ток. Именно эти самые пресловутые периоды и делают его переменным. Переменный ток имеет определённый период своих изменений. Периодом называется полный цикл всех изменений показателей тока. Как только заканчивается первый период, начинается следующий период и так до бесконечности. Один период равен одному Герцу, а частота тока измеряется в секунду. Общепринятая частота тока в России и большинстве стран Европы равна 50 Гц. В США и Канаде используют сети частотой 60 Гц, а в некоторых странах, например, в Японии, используют оба стандарта частоты. Это и позволяет току двигаться постоянно. Как только вы втыкаете вилку в сеть, вы замыкаете плюс и минус, и начинается движение тока.
Мы с вами разобрались, что такое постоянный и переменный ток, и какая между ними разница. Поговорили о том, что переменный ток имеет огромные потери при передаче на большие расстояния. В следующий раз расскажем про высоковольтное и низковольтное напряжение. Нам предстоит понять, как именно электричество попадает в наши квартиры.
Источник
Общее понятие о переменном токе
В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.
Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.
Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент. Сигнал на экране осциллографа
Сигнал на экране осциллографа
Многофазный переменный ток
Обозначение переменного тока
Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.
Трёхфазный ток
Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.
Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.
Трёхфазный переменный ток
Двухфазный ток
Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.
Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.
Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска
График двухфазного напряжения и схематический рисунок двухфазного генератора
Работа в различных условиях
Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р < 0.
Измерение мощностных характеристик переменного потока электронов проводится при пропускании равного по значению тока по фазным проводникам. Показатели силы течения заряженных частиц с применением нулевого проводника имеют ничтожную размерность. Равномерная или симметричная фазовая нагрузка в трехфазной магистрали зависит от величины протекающих токов. Неравномерная или несимметричная нагрузка зависит от прохождения потока по нейтральным или нулевым кабелям. Общий мощностной уровень находится суммированием.
Если присутствует фазовый сдвиг между напряжением и силой тока, то он совпадает с углом смещения между векторными радиусами показателей электротока. В условиях переменного напряжения совпадение векторных радиусов тока и вольтажа отмечается только при отсутствии в цепи конденсаторов и катушек индукции. Установка индукторов не мешает совпадению фазных значений. При этом происходит векторное вращение равной интенсивности. График смещения внутреннего угла остается постоянным.
Если в магистрали происходит сдвиг напряжения и переменного тока, то мощностные показатели представляются значением с отрицательным знаком, так как калькулятор перемножает положительные и отрицательные величины. Продолжительность периодов зависит от уровня смещения фаз. При этом длительность отрицательных нагрузок определяет характеристики сдвига. При расчетах используются показатели сопротивления, которые знакомы из физического закона Ома.
Электрические цепи переменного тока
Переменный ток, в отличие от постоянного, с определенной периодичностью меняет направление и величину. Генерируется он путем вращения проволочного витка в магнитном поле или, наоборот, магнитного поля при неподвижном витке.
Наводимая ЭДС зависит от синуса угла, на который повернут ротор генератора. Потому все переменные электрические величины являются синусоидальными. Существует два вида цепей переменного тока – одно- и трехфазные.
Параметры переменного тока:
- амплитуда: максимальное отклонение от нуля. Оно достигается при положении плоскости витка перпендикулярно силовым линиям поля. В момент времени, когда плоскость витка и силовые линии становятся параллельными, ЭДС падает до нуля, затем меняет знак;
- частота: число полных циклов за секунду (в основном используется ток частотой в 50 Гц);
- мгновенное значение: величина параметра в данный момент времени;
- действующее значение (см. ниже).
Недостаток переменного тока: при малых частотах опаснее для живых организмов, чем постоянный.
Однофазные
В однофазной цепи генератор имеет одну обмотка для индукции ЭДС и к ней подключен один проводник. Источников тока может быть и несколько, но они должны работать в одной фазе и на одной частоте.
Трехфазные
В статоре генератора 3-фазной цепи имеется 3 обмотки для индукции, сдвинутые друг относительно друга на угол в 120 n градусов, где n — число пар полюсов. Соответственно, наводимые в каждой обмотке ЭДС отличаются по фазе на угол в 120 градусов (электрический угол). При отдельном подключении каждой обмотки для передачи энергии требуется 6 проводов. Систему называют несвязной и сегодня она не применяется ввиду повышенных затрат материалов.
Экономически более целесообразна связанная система, когда обмотки соединены одним из двух способов:
- «звездой». Обмотки одной стороной замкнуты в одной точке. Это дает возможность применить один нулевой провод, общий для всех фаз, то есть система получается 4-проводной. А если токи в фазах равны (симметричная нагрузка), необходимость в использовании нулевого провода отпадает: токи гасят друг друга (их векторная сумма равна нулю). В этом случае применяется 3-проводная система;
- «треугольником». Обмотки образуют замкнутый контур: каждая своим концом подключается к началу следующей. В каждой фазе формируется линейное напряжение, равное фазному. Но величина фазного тока окажется в 1,72 раза ниже линейного.
Трехфазная система электроснабжения превосходит однофазную в следующем:
- требуется меньше материалов для изготовления силовых кабелей;
- для одной установки доступно два напряжения: фазное (фаза – нейтраль) и линейное (фаза – фаза). То есть при изменении схемы подключения нагрузки со «звезды» на «треугольник», получают два уровня мощности;
- есть возможность получать вращающееся магнитное поле, чем удешевляется конструкция электродвигателей и других устройств. Для этого в статоре двигателя размещают равноудаленно три обмотки, подключенные к разным фазам;
- система уравновешена. К примеру, 3-фазные люминесцентные светильники почти не мерцают, в отличие от 1-фазных. В таком светильнике имеется три лампы или группы ламп, подключенных к разным фазам. Когда светимость одной лампы уменьшается, соседняя разгорается. Происходит взаимокомпенсация.
Благодаря уравновешенности одинаково распределяется нагрузка на генератор и тот служит дольше.
Измерение частоты
Цепи и оборудование могут быть предназначены для работы с постоянной или переменной частотой. Работа при частоте, которая отличается от указанной, может привести к неправильному функционированию.
Например, двигатель переменного тока, рассчитанный на работу при 60 Гц, работает медленнее при частоте ниже 60 Гц или быстрее при частоте выше 60 Гц. Для двигателей переменного тока любое изменение частоты приводит к пропорциональному изменению частоты вращения двигателя. Снижение частоты на пять процентов приводит к снижению частоты вращения двигателя на пять процентов.
На некоторых цифровых мультиметрах предусмотрены дополнительные режимы измерения частоты:
- Режим частотомера: измерение частоты сигналов переменного тока. Этот режим можно использовать для измерения частоты при поиске и устранении неисправностей электрического и электронного оборудования.
- Режим регистрации значений MIN/MAX (МИН./МАКС.): позволяет записывать результаты измерения частоты за определенный период. Аналогичным образом можно записывать результаты измерения напряжения, тока и сопротивления.
- Режим автоматического выбора диапазона: автоматический выбор диапазона измерения частоты. Если частота измеряемого напряжения выходит за пределы диапазона измерения, цифровой мультиметр не сможет отобразить точный результат измерения. Диапазоны измерения частоты см. в руководстве по эксплуатации