Правило буравчика

Правило Буравчика

Расположим рядом с проводником несколько магнитных стрелок и пустим в проводнике ток — стрелки сориентируются в магнитном поле проводника (рис. 3.1, а). Северный полюс каждой стрелки укажет направление вектора индукции магнитного поля в данной точке, а значит, и направление магнитных линий этого поля.

С изменением направления тока в проводнике изменится и ориентация магнитных стрелок (рис. 3.1, б). Это означает, что направление магнитных линий зависит от направления тока в проводнике.

Рис. 3.1. Определение направления линий магнитной индукции магнитного поля проводника с током с помощью магнитных стрелок

Определять направление линий магнитной индукции с помощью магнитной стрелки не всегда удобно, поэтому используют правило буравчика:

Если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление магнитных линий магнитного поля тока (рис. 3.2, а);

или иначе:

Если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление магнитных линий магнитного поля тока (рис. 3.2, б).

Рис. 3.2. Определение направления линий магнитного поля проводника с током с помощью правила буравчика

От чего зависит модуль индукции магнитного поля проводника с током

Вспомните: магнитное действие проводника с током первым обнаружил X. Эрстед в 1820 г. А вот почему это открытие не было сделано раньше? Дело в том, что с увеличением расстояния от проводника магнитная индукция созданного им поля быстро уменьшается. Поэтому, если магнитная стрелка расположена не вблизи проводника с током, магнитное действие тока почти незаметно.

Рис. 3.3. Линии магнитной индукции магнитного поля прямого проводника с током. Проводник расположен перпендикулярно плоскости рисунка; крестик означает, что сила тока в проводнике направлена от нас

Магнитная индукция зависит также от силы тока: с увеличением силы тока в проводнике магнитная индукция созданного им магнитного поля увеличивается.

Магнитное поле катушки с током

Свернем изолированный провод в катушку и пустим по проводу ток. Если теперь вокруг катушки разместить магнитные стрелки, то к одному торцу катушки стрелки повернутся северным полюсом, а к другому — южным (рис. 3.4). Это означает, что около катушки с током существует магнитное поле.

Рис. 3.4. Исследование магнитного поля катушки с током с помощью магнитных стрелок

Как и полосовой магнит, катушка с током имеет два полюса — южный и северный. Полюсы катушки расположены на ее торцах, и их легко определить с помощью правой руки:

Если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на северный полюс катушки, то есть направление вектора магнитной индукции внутри катушки (рис. 3.5).

Рис. 3.5. Определение полюсов катушки с током с помощью правой руки

Сравнив магнитные линии постоянного полосового магнита и катушки с током, увидим, что они очень похожи (рис. 3.6). Заметим: магнитная стрелка, подвешенная катушка с током и подвешенный полосовой магнит ориентируются в магнитном поле Земли одинаково.

Подводим итоги:

Около проводника с током существует магнитное поле. Магнитная индукция поля, созданного током, уменьшается с увеличением расстояния от проводника и увеличивается с увеличением силы тока в проводнике.

Направление линий магнитной индукции магнитного поля проводника с током можно определить с помощью магнитных стрелок или правила буравчика.

Катушка с током, как и постоянный магнит, имеет два полюса. Их можно определить с помощью правой руки: если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на ее северный полюс.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Электрическое поле Земли
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца

Сила лоренца применение и формула

Действие электромагнитных полей порождает возникновение точечной заряженной частицы, на который воздействуют силы электрического и магнитного характера. В скомбинированном виде они получили наименование силы Лоренца.

Таким образом, сила Лоренца воздействует на любую частицу с зарядом, падающую с определенной быстротой в магнетическом поле. Степень влияния связана с электрическим зарядом частицы (q), показателем магнитной индукции (В) и быстротой падения частицы (V).

На основании полученных данных голландским ученым Хендриком Лоренцем была выведена формула: FL = |q|x V x B x sinα. Все условные обозначения приведены на рисунке.

В практической деятельности сила Лоренца получила применение в следующих областях:

  • Кинескопы – электронно-лучевые или телевизионные трубки. В этих устройствах электроны, летящие в направлении экрана, отклоняются магнитным полем, которое создают специальные катушки.
  • Масс-спектрографы. Определяют массы заряженных частиц, путем разделения их по удельным зарядам. Вакуумная камера помещается в магнитном поле. Заряженный частицы ускоряясь, двигаются по дуге и оставляют след на фотопластинке. Па радиусу траектории вначале определяется удельный заряд, на основании которого вычисляется и масса частицы.
  • Циклотрон. Ускоряет заряженные частицы. Ускорение происходит под действием силы Лоренца, после чего траектория частиц сохраняется за счет магнитного поля. Прибор давно начали использовать в медицинских исследованиях с применением радионуклидных фармацевтических препаратов.
  • Магнетрон. Электронная лампа высокой мощности для генерации микроволн, возникающих при взаимодействии электронного потока и магнитного поля. Используется с современных радиолокационных устройствах.

Электромагнетизм

  • Когда электричество ( обычный ток ) течет по длинному прямому проводу, оно создает круговое или цилиндрическое магнитное поле вокруг провода в соответствии с правилом правой руки. Обычный ток, противоположный действительному потоку электронов, представляет собой поток положительных зарядов вдоль положительной оси z . Условное направление магнитной линии задается стрелкой компаса.
  • Электромагнит : магнитное поле вокруг провода довольно слабое. Если провод скручен в спираль, все силовые линии внутри спирали направлены в одном направлении, и каждая последующая катушка усиливает другие. Продвижение спирали, некруглая часть тока и силовые линии — все указывают в положительном направлении оси z . Поскольку магнитного монополя нет, силовые линии выходят из конца + z , замыкаются за пределами спирали и снова входят в конец — z . Конец + z, где выходят линии, определяется как северный полюс. Если пальцы правой руки согнуты в направлении круговой составляющей тока, большой палец правой руки указывает на северный полюс.
  • Сила Лоренца : если положительный электрический заряд движется поперек магнитного поля, он испытывает силу, соответствующую силе Лоренца, с направлением, заданным правилом правой руки. Если сгибание правых пальцев представляет собой вращение от направления движения заряда к направлению магнитного поля, то сила действует в направлении большого пальца правой руки. Поскольку заряд движется, сила заставляет траекторию частицы искривляться. Сила изгиба вычисляется с помощью векторного произведения. Это означает, что изгибающая сила увеличивается с увеличением скорости частицы и напряженности магнитного поля. Сила максимальна, когда направление частицы и магнитные поля расположены под прямым углом, меньше при любом другом угле и равна нулю, когда частица движется параллельно полю.

Правило Ампера для правой руки

Прогнозирование направления поля ( B ), учитывая, что ток I течет в направлении большого пальца.

Определение направления магнитного поля ( B ) для электрической катушки

Ампера правило захвата правой руки (также называется правое правилом винта , правила кофе кружки или штопор-правило ) используются либо , когда вектор (например, вектор Эйлера ) должен быть определен для представления вращения тела, а , магнитное поле или жидкость, или наоборот, когда необходимо определить вектор вращения, чтобы понять, как происходит вращение. Он показывает связь между током и линиями магнитного поля в магнитном поле , созданном током.

Андре-Мари Ампер , французский физик и математик, в честь которого было названо правило, был вдохновлен Гансом Кристианом Эрстедом , другим физиком, который экспериментировал с магнитными иглами. Эрстед заметил, что иглы закручиваются рядом с проводом, по которому проходит электрический ток , и пришел к выводу, что электричество может создавать магнитные поля .

Приложение

Это правило используется в двух различных приложениях кругового закона Ампера :

  1. Электрический ток проходит по прямому проводу. Когда большой палец направлен в направлении обычного тока (от положительного к отрицательному), изогнутые пальцы будут указывать в направлении линий магнитного потока вокруг проводника. Направление магнитного поля (против часовой стрелки, а не по часовой стрелке, если смотреть на кончик большого пальца) является результатом этого соглашения, а не лежащим в основе физическим явлением.
  2. Электрический ток проходит через соленоид , что приводит к магнитному полю . Когда правая рука обхватывает соленоид пальцами в направлении обычного тока , большой палец указывает в направлении северного магнитного полюса.

Механическое вращение

Важные сокращения: ПБ — правило буравчика, УС — угловая скорость, ППР — правило правой руки. Формулировка ПБ для механического вращения  определяется следующим образом: Если вы начнёте завинчивать бур в направлении, в коем крутится корпус, он будет закручен в ту сторону, куда будет стремится УС. Как и ожидалось, здесь всё просто и понятно. Но вот ППР в механике  определяется заметно иначе. Это правило в данном случае выглядит и работает так:

  1. Если вы возьмёте некий объект в правую руку;
  2. Затем станете крутить его в ту сторону, в кою вам указывают все пальцы, кроме большого;
  3. Тогда последний оставшийся палец укажет нам, куда будет стремится УС при таком вращении.

Абсолютно также вы сможете найти сторону, в которую будет направлен угловой момент.

Это было ожидаемо, потому как угловой момент прямо пропорционален угловой скорости с положительным (!) коэффициентом. Аналогично это будет выглядеть и для момента импульса. Но вернёмся к нашему чудесному правилу винта и посмотрим, как такой подход работает для момента силы.

Определение направления вектора магнитной индукции с помощью правила буравчика

В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.

Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:

  • Магнитной индукции;
  • Величины и направления индукционного тока;
  • Угловой скорости.

Такое понимание было сформулировано в правиле буравчика.

Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.

Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.

Тест по физике правило левой руки 9 класс

Тест по физике Правило левой руки. Обнаружение магнитного поля по его действию на электрический ток для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.

1. Направление тока в магнетизме совпадает с направлением движения

1) электронов 2) отрицательных ионов 3) положительных частиц 4) среди ответов нет правильного

2. Квадратная рамка расположена в однородном магнитном поле так, как показано на рисунке. Направление тока в рамке указано стрелками.

Сила, действующая на нижнюю сторону рамки, направлена

3. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и ис­точника постоянного тока, находится в однородном магнит­ном поле, силовые линии которого направлены вертикально вверх (см. рис., вид сверху).

Сила, действующая на проводник 4-1, направлена

1) горизонтально вправо 2) горизонтально влево 3) вертикально вверх 4) вертикально вниз

4. Электрическая цепь, состоящая из четырех прямолиней­ных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и источника постоянного тока, находится в однородном магнитном поле, линии которого направлены горизонтально вправо (см. рис., вид сверху).

Сила, действующая на проводник 1-2, направлена

5. В основе работы электродвигателя лежит

1) действие магнитного поля на проводник с электрическим током 2) электростатическое взаимодействие зарядов 3) явление самоиндукции 4) действие электрического поля на электрический заряд

6. Основное назначение электродвигателя заключается в преобразовании

1) механической энергии в электрическую энергию 2) электрической энергии в механическую энергию 3) внутренней энергии в механическую энергию 4) механической энергии в различные виды энергии

7. Магнитное поле действует с ненулевой по модулю силой на

1) покоящийся атом 2) покоящийся ион 3) ион, движущийся вдоль линий магнитной индукции 4) ион, движущийся перпендикулярно линиям магнитной индукции

8. Выберите верное(-ые) утверждение(-я).

А. для определения направления силы, действующей на по­ложительно заряженную частицу, следует четыре паль­ца левой руки располагать по направлению скорости ча­стицы Б. для определения направления силы, действующей на от­рицательно заряженную частицу, следует четыре пальца левой руки располагать против направления скорости частицы

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

9. Положительно заряженная частица, имеющая горизонтально направлен­ную скорость v, влетает в область поля перпендикулярно магнитным ли­ниям. Куда направлена дей­ствующая на частицу сила?

1) Вертикально вниз 2) Вертикально вверх 3) На нас 4) От нас

10. Отрицательно заряженная частица, имеющая горизонтально направлен­ную скорость v, влетает в область поля перпендикулярно магнитным ли­ниям. Куда направлена дей­ствующая на частицу сила?

1) К нам 2) От нас 3) Горизонтально влево в плоскости рисунка 4) Горизонтально вправо в плоскости рисунка

Ответы на тест по физике Правило левой руки Обнаружение магнитного поля по его действию на электрический ток1-3 2-4 3-2 4-3 5-1 6-2 7-4 8-3 9-4 10-2

Источник

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) (рис. 1.)

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Электродинамика и магнитостатика

Магнитная индукция представляет собой векторный фактор, который характеризует силовое поле. Величина показывает влияние магнитного фона на отрицательно и положительно заряженные частицы в исследуемом пространстве. Индукция определяет силу влияния поля на заряд, перемещающийся с заданной скоростью. Для этого случая законы применения описываются так:

  • Правило винта. Если поступательное круговое движение буравчика совпадает с направлением заряженных электронов в катушке, то путь поворота ручки инструмента будет совпадать с курсом магнитного вектора полярной индукции, направление при этом зависит от тока.
  • Принцип правой кисти. Если взять стержень в правую кисть так, что отставленный под прямым углом палец демонстрирует курс тока, то другие пальцы будут соответствовать направлению луча магнитной индукции, продуцируемого током. Путь магнитного вектора индукции прокладывается касательно линии отрезков.

Для подвижного проводника

В стержне из металла находится большое число свободных электронов, движение которых характеризуется как хаотичное. Если катушка движется в силовом электромагнитном поле вдоль линий, то фон отклоняет электроны, перемещающиеся одновременно с проводником. Их движение создает ЭДС (электродвижущую силу) и называется электромагнитной наведенной индукцией.

Ток будет протекать под действием разности потенциалов при подсоединении такой катушки к внешней цепи по замкнутому контуру. При передвижении стержня по направлению силовых линий снижается до нуля воздействие поля на заряды. Не возникает электродвижущая сила, нет напряжения, отсутствует ток электронов.

Вам это будет интересно  Описание и разновидности вводно-распределительных устройств (ВРУ)

ЭДС индукции равняется произведению рабочего размера проводника, скорости движения стержня и значения магнитной индукции. Ее направление устанавливается по закону правой руки. Ладонь располагается так, чтобы в нее были направлены линии силового поля, а отогнутый под 90° большой палец ставится вдоль движения стержня. В этом положении четыре распрямленных пальца покажут курс тока индукции.

Нахождение ЭДС по Максвеллу

Электродвижущее давление будет возникать при каждом пересечении стержня и силового поля. Результативным будет перемещение проводника, самого поля или изменение электромагнитных характеристик силового пространства.

ЭДС, полученная в контуре при состыковке его с изменяющимся силовым полем, измеряется скоростью трансформации магнитного потока. Направление индуцированной движущей силы идет так, что продуцируемый ею электрический ток противодействует реконструкции потоков магнитного излучения.

Изменение тока ведет к реформированию создаваемого им магнитного потока. Проходя через пространство, магнитное излучение стыкуется с соседними проводниками и со своим. В стержне наводится электродвижущая сила, которая носит название самоиндукции. Явление означает поддержку тока при его уменьшении и ослабление движения электронов при увеличении силы тока.

Если вращать буравчик по путям завихрения пространства, где возникают векторы, то его движение покажет направление кручения ротора. Это можно проследить, если четыре сжатых пальца правой кисти поставить по курсу завихрения. В этом случае отогнутый палец укажет путь движения ротора.

Для магнитного вектора индукции правила буравчика совпадают с законом Ампера — Максвелла. Но к электротоку через контур добавляется скорость трансформации силового поля через эту конфигурацию, а магнитное поле воспринимается только в случае его перемещения в пределах очертания.

Применение правил левой кисти:

  • Ладонь ставится так, чтобы индукционные линии входили в центр внутренней стороны, а пальцы соответствовали токовому направлению. Отставленный большой палец определит путь силы, оказывающий давление на стержень со стороны силового поля. Мощь носит наименование силы Ампера.
  • При втором варианте ладонь располагается так, чтобы линии силового поля входили под прямым углом в плоскость руки, а пальцы располагались по направлению перемещения положительных электронов или в противоположную сторону от отрицательных частиц. Тогда палец под углом 90° укажет путь приложения силы Лоренца.

Правило правой кисти для соленоида: нужно взять катушку индуктивности в правую руку так, чтобы пальцы показывали путь тока в оборотах, отставленный под 90° большой палец определит курс магнитных линий во внутренней части устройства. Зная полярность, легко вычислить путь прохождения электрического тока.

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника — в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Похожие материалы:

  • Магнитное поле тока. Магнитные силовые линии
  • Напряженность магнитного поля
  • Магнитная индукция
  • Электромагнитная индукция
  • Правило правой руки
  • Взаимоиндукция
  • Самоиндукция
  • ЭДС самоиндукции: основные послулаты
  • Постоянные магниты

Комментарии

Громова Ева 27.02.2018 18:58 Спасибо большое за статью!

Цитировать

асаев антон 04.09.2014 04:56 спасибо создателю сайта

Цитировать

Обновить список комментариев

Обоснование правила Ленца

Для объяснения правила Ленца достаточно вспомнить закон сохранения энергии.

Возникающий в контуре ток, проходя по сопротивлению контура, совершает работу, которая тратится на нагревание провода катушки. Энергия для этого как раз и возникает при движении магнита. И, поскольку магнит должен при этом совершать положительную механическую работу – магнитное поле катушки должно быть направлено против поля самого магнита, в какую бы сторону он не двигался.

Только в этом случае магнит будет совершать положительную работу, энергия которой будет двигать заряды внутри контура, порождая индукционный ток, а индукционный ток, в свою очередь, будет совершать работу по нагреванию провода катушки (и отклонения стрелки гальванометра).

Рис. 3. Направление индукционного тока.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: