Закон электромагнитной индукции фарадея и его формулировка в дифференциальной форме

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

B= µ0nI,

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

E = LI2 :2,

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) — это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Магнитное поле электромагнита (соленоида)

Определение

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

N=ld..

l — длина соленоида, d— диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B=μμINl..=μμId..

Модуль напряженности магнитного поля в центральной части соленоида:

H=INl..=Id..

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня — это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H2O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение — это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​\( \Phi \)​ через контур из этого проводника пропорционален модулю индукции ​\( \vec{B} \)​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​\( L \)​ между силой тока ​\( I \)​ в контуре и магнитным потоком ​\( \Phi \)​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Закон полного тока

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB

dB = µ0 *I*dl*sin α /4*π*r2,

где

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

В = µ* µ0*2*I/4*π*r.

Для кругового движения она выглядит так:

В = µ*µ0*I/4*π*r.

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

B→= B1→+ B2→+ B3→… + Bn→

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

108 Мкс = 1 Вб.

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

φ = |B*S| = B*S*cosα,

где

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900)

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Теория

Электромагнитное поле – аналог механической силы, проявляется воздействием на перемещающиеся носители электрического заряда, тела с магнитным моментом. Характеризуется механической силой, которое поле оказывает на проводники либо магниты.

Опыты показывают, что магнитное поле пытается сориентировать магнитную стрелку, развернуть её относительно плоскости витка, в направлении, которое называется направлением поля. Для планеты его принимают за линию, направленную с географического севера на юг. Электрическое поле характеризуется векторной величиной E – напряженностью. Для описания магнитного воздействия применяют величину B, названную магнитной индукцией.

Во избежание путаницы характеристики носят разные названия.

Направлением B считают то, куда укажет магнитная стрелка относительно витка с электрическим током. Его модуль определяют по максимальному значению вращающего момента Mmax, действующего на стрелку. При одинаковом значении индукции в каждой точке пространства поле называется однородным, когда его величина проявляется в веществе в разной степени – неоднородным.

Энергия, накопленная во взаимно связанных индукторах

Предположим, что две взаимно связанных индуктивности имеют значения самоиндукции L1 и L2. В них движутся токи i1 и i2. Изначально ток в обеих катушках равен нулю. Значит, энергия тоже равна нулю. Значение i1 увеличивается с 0 до I1, а i2 равно нулю. Итак, мощность в индукторе один,

Итак, запасенная энергия,

Теперь, если мы сохраним i1 = I1 и увеличим i2 от нуля до I2, взаимно индуцированная ЭДС в индукторе 12 будет M2 di1 / dt, в то время как взаимно индуцированная ЭДС в индукторе XNUMX будет равна нулю, поскольку iXNUMX не изменяется.Итак, мощность индуктора два за счет взаимной индукции,

Накопленная энергия,

Полная энергия, запасенная в индукторах, когда оба i1 и i2 достигли постоянных значений, составляет:

Если мы изменим приращения тока, то есть сначала увеличим i2 от нуля до I2, а затем увеличим i1 от нуля до I1, общая энергия, запасенная в индукторах, составит:

Поскольку M12 = М21, можно сделать вывод, что полная энергия взаимно связанных индукторов составляет,

Эта формула верна только тогда, когда оба тока входят в пунктирные клеммы. Если один ток входит в пунктирную клемму, а другой уходит, запасенная энергия будет

ЭДС источника тока[ | ]

Если на участке цепи не действуют сторонние силы (однородный участок цепи

) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется: φ 1 − φ 2 = I R . {\displaystyle \varphi _{1}-\varphi _{2}=IR.} Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода φ a {\displaystyle \varphi _{a}} и катода φ k {\displaystyle \varphi _{k}} можно записать:

φ a − φ k = I R e , {\displaystyle \varphi _{a}-\varphi _{k}=IR_{e},}

где как и ранее R e {\displaystyle R_{e}} — сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E = I R e + I r {\displaystyle {\mathcal {E}}=IR_{e}+Ir} нетрудно получить

φ a − φ k E = R e R e + r {\displaystyle {\frac {\varphi _{a}-\varphi _{k}}{\mathcal {E}}}={\frac {R_{e}}{R_{e}+r}}} и затем φ a − φ k = R e R e + r E . {\displaystyle \varphi _{a}-\varphi _{k}={\frac {R_{e}}{R_{e}+r}}{\mathcal {E}}.}

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока φ a − φ k {\displaystyle \varphi _{a}-\varphi _{k}} меньше, чем ЭДС источника.
  2. В предельном случае, когда R e {\displaystyle R_{e}} бесконечно (цепь разорвана), выполняется E = φ a − φ k . {\displaystyle {\mathcal {E}}=\varphi _{a}-\varphi _{k}.}

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи.

Электрическая цепь и индуктивность


Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля

Магнитное поле. Вектор магнитной индукции. Правило буравчика:

Магнитное поле: это особая форма, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами

  • Вектор магнитной индукции B : это силовая характеристика магнитного поля. Направление В это направление от южного полюса к северному полюсу магнитной стрелки, свободно устанавливающейся в магнитном поле (совпадает с направлением положительной нормали к замкнутому контуру с током).
  • Правило Буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора В.
  • Модуль вектора магнитной индукции В — это отношение максимальной силы Fm, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока I на длину этого участка Δl :

Сила Ампера, Закон Ампера, правило левой руки:

  • Сила Ампера: это сила, действующая на проводник с током, помещенный в магнитное поле
  • Закон Ампера: сила Ампера равна произведению модуля вектора магнитной индукции на силу тока, длину участка проводника Δl и на синус угла α между магнитной индукцией и участком проводника:
    • при этом, очевидно, что если ток (проводник) перпендикулярен вектору магнитной индукции, то
    • sin α = 1, и формула принимает вид:

Правило левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению движения тока, то отогретый на 90 о большой палец покажет направление силы, действующей на отрезок проводника

Сила Лоренца, правило левой руки:

  • Сила Лоренца: это сила, действующая на движущуюся заряженную частицу со стороны магнитного поля:
    • при этом, очевидно, что если скорость частицы перпендикулярна вектору магнитной индукции,
    • то sin α = 1, и формула принимает вид:

Правило левой руки: если левую руку расположить так, чтобы составляющая вектора В перпендикулярная скорости заряда входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогрутый на 90 о большой палец покажет направление действующей заряд силы Лоренца

Явление электромагнитной индукции, магнитный поток, поток магнитной индукции:

Электромагнитная индукция: это явление возникновения электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется

  • Магнитный поток (=поток магнитной индукции) : через поверхность площадью S это величина равная произведению модуля вектора магнитной индукции В на площадь и косинус угла между вектром В и нормалью к плоскости S:
    • при этом, очевидно, что если магнитная индукция перпендикулярна плоскости,
    • то cos α = 1, и формула принимает вид:

Правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного поля, которым он вызван.

Закон электромагнитной индукции:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взатой со знаком «-»

Самоиндукция:

Самоиндукция это частный случай электромагнитной индукции, при котором изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле:

Энергия магнитного поля тока:

Энергия магнитного поля тока: Энергия магнитного поля тока равна работе, которую должен совершить источник, чтобы создать данный ток

Консультации и техническая поддержка сайта: Zavarka Team

Особенности расчёта индуктивных элементов с сердечниками

В отличие от индуктивных элементов без сердечников, при расчёте которых учитывался магнитный поток пронизывающий только проводник с током, магнитный поток индуктивных элементов с сердечниками практически полностью замыкается на сердечники. Поэтому при расчёте индуктивности таких элементов необходимо учитывать размеры сердечника и материал, из которого он изготовлен, то есть его магнитную проницаемость. Обобщённую формулу для расчёта индуктивных элементов с сердечниками можно выразит с помощью следующего выражения

где ω – количество витков катушки,

μа – абсолютная магнитная проницаемость вещества, из которого изготовлен сердечник,

SM – площадь поперечного сечения сердечника,

lM – длина средней магнитной силовой линии,

Таким образом, зная размеры сердечника можно достаточно просто вычислить индуктивность. Однако в связи с такой простотой выражения и разбросом магнитной проницаемости материала сердечника, погрешность в расчёте индуктивности составит 25 %.

Для сердечников, имеющих сложную конструктивную конфигурацию, вводится понятие эффективных (эквивалентных) размеров, которые учитывают особенности формы сердечников: эффективный путь магнитной линии le и эффективная площадь поперечного сечения Se сердечника. Тогда индуктивность катушки с сердечником будет вычисляться по формуле

μ0 – магнитная постоянная, μ0 = 4π*10-7,

μr – относительная магнитная проницаемость вещества,

le – эффективный путь магнитной линии сердечника.

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника, измеряется в мм-1;

С2 – вторая постоянная сердечника, которая равна сумме отношений длин однородных по сечению участков сердечника к квадрату своего сечения, измеряется в мм-3;

lN – длина N – го участка сердечника,

ЧИТАТЬ ДАЛЕЕ: Как сделать жалюзи из обоев своими руками

SN – площадь N – го участка сердечника.

Тогда величины Se и le определятся из следующих выражений

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника.

Несмотря на довольно сложные формулировки и формулы, вычисление индуктивности по ним достаточно простое.

Выпускается достаточно много типов сердечников, которые обладают различными конструктивными особенностями и свойствами, рассмотрим некоторые из них.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: